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Abstract. A Green's function method for obtaining an estimate of the ocean circu-

lation using both a general circulation model and altimetric data is demonstrated.

The fundamental assumption is that the model is so accurate that the differences
between the observations and the model-estimated fields obey a linear dynamics.

In the present case, the calculations are demonstrated for model/data differences

occurring on very a large scale, where the linearization hypothesis appears to be

a good one. A semi-automatic linearization of the Bryan/Cox general circulation
model is effected by calculating the model response to a series of isolated (in both

space and time) geostrophically balanced Vortices. These resulting impulse re-
sponses or "Green's functions" then provide the kernels for a linear inverse problem.
The method is first demonstrated with a set of "twin experiments" and then with

real data spanning the entire model domain and a year of TOPEX/POSEIDON

observations. Our present focus is on the estimate of the time-mean and annual

cycle of the model. Residuals of the inversion/assimilation are largest in the western

tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution
diminishes with depth with 1 year of data. The model mean is modified such that

the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted

southward by about 10 °. Corrections to the flow field at the annual cycle suggest

that the dynamical response is weak except in the tropics, where the estimated

seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The
underestimation of observed fluctuations can be related to the inversion on the

coarse spatial grid, which does not permit full resolution of the tropical physics. The
methodology is easily extended to higher resolution, to use of spatially correlated

errors, and to other data types.

1. Introduction

The TOPEX/POSEIDON (T/P) altimetric satellite

is providing oceanographers for the first time with a
continuing global database for describing and under-

standing the large-scale ocean circulation. The satellite
was launched in August 1992 and ever since has been

measuring the global sea surface height every 10 days
with an unprecedented accuracy using a radar altimeter

system along repeating ground tracks (see the Journal
of Geophysical Research special issues on T/P, volume

99, number C12 1994, and volume 100, number C12,

1995). With this data set, and with other global-scale in
situ data from programs such as the World Ocean Cir-

culation Experiment, one finally can begin describing
the ocean circulation quantitatively on a nearly day-to-

day basis, rather than as a vague climatological mean.
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There is another major reservoir of knowledge of the

ocean circulation: the general circulation models, which
attempt to summarize understanding of ocean physics
in the form of numerical codes. The problem we address

here is to find a practical means for combining the in-
formation from diverse observations with the dynamics

inherent in ocean general circulation models (OGCMs)
so as to produce best estimates of the oceanic state at
any given time and place accounting properly for errors
in both models and observations. This problem is a

challenging one because model and observational errors
contain complex space/time structures and the number
of variables required to describe the oceanic state at any

one time (the "state vector") is enormous. The general

problem we are addressing is one of estimation theory

(meteorologists would call it "assimilation").
Algebraically, an OGCM can be written in canonical

form as

x(t + at) = r(x(t), q(Q, t), (1)

where x(t) is the state vector at discrete time t, r rep-
resents the operator stepping the model forward in time

starting from a prescribed initial condition x(t0), and
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q(t) representsexternallyspecifiedboundaryconditions
andsourcesandsinks.

Most oceanographicmeasurements,includingalti-
metricones,areat leastapproximatelya linearcom-

bination of the model state vector, e.g., velocity, tem-
perature, and salinity, but are contaminated by noise.
Such measurements can be written as

y(t) : E(t)x(t) + n(t), (2)

where E is the "observation matrix" relating the model

state vector to observables. Normally, E is very sparse
because observables usually involve only local subsets or

related elements of x(t). Altimetric surface height ob-
servations (, in particular, are obtained only at the sea

surface, measuring the dynamically induced surface el-

evation (or the equivalent surface pressure ps -- gP()
along subsatellite tracks sequentially in time, while
floats or tomographic experiments provide subsurface

data along float trajectories or tomographic ray paths.
The precise structure of E and the existence of its in-

verse is a very important question which, in the context
of altimetry, is directly related to the general issue of
the observability of the ocean circulation through sea

surface height measurements [Fukumori et al., 1993].
In the terminology of inverse problems, observability is

equivalent to the state estimation problem having full
rank.

The problem we wish to solve is to find an estimate

_(t) of the state vector of the ocean subject to model
dynamics, and its uncertainty P(t), given observations
y(t), with noise covariance R(t), and a model (1) with

uncertainty Q(t). Most estimation methods addressing
this problem require the minimization of a quadratic
function measuring the model minus data misfit,

J = E(y(t) - E_c(t))TR(t)-l(y(t) - E_(t)) (3)
t

subject to the model physics constraints. (Here z_(t)
represents the estimate of the state vector that results

from combining the model and observations.) There are
many schemes for minimizing J subject to the model in

(1), through either constrained or unconstrained opti-
mization methods. Optimization schemes known to be

useful, however, overwhelm present-day computer facil-
ities for realistic problems on basin scales and larger.

For this reason, many suboptimal approaches are being
studied, including state reduction, the use of steadys-
tate sequential algorithms, and the like [e.g., Fukurnori

et al., 1993; Marotzke and Wunsch, 1993].
In addition to the problem of state vector dimension,

the oceanographic case is complicated by the nonlineari-

ties in (1). To deal with both the size of the problem and
the nonlinearity, we use here a method which is based
upon a form of Green's functions for a linearized model

associated with the OGCM. The fundamental assump-
tion is that modern nonlinear OGCMs driven by ob-
served meteorological fields will be sufficiently accurate

in simulating the ocean that the discrepancies between
the computed and observed oceanic state obey linear

physics. Almost all optimization methods which are

practical with large systems (filters, smoothers, Pon-

tryagin principle/adjoints) are based upon linearization
of the model dynamics about a reference state. Finding

the linearization can be an onerous job; one of our goals

here is to render this job less demanding of programmer
skill than it normally is.

As discussed in more detail below, the OGCM is used
twice: once to compute, using the best available initial
and boundary conditions, a model first estimate of the

oceanic state. In a separate calculation, the model first

estimate is then empirically linearized by perturbing it

with a succession of simple disturbances on a coarser

grid. This new, coarse resolution, linear model is used

to represent the differences between the large-scale data
and the original full OGCM during the estimation pro-

cedure. The result is a linear inverse problem for a set of
disturbance coefficients, which is then solved. The orig-

inal full nonlinear model can be iteratively improved
if necessary. This linearization procedure, if it can
be shown to be effective, would serve several practical

purposes, including separating the problem of making
model improvements in the OGCM from those of esti-

mation, and using the numerical power of a computer
to produce the model linearization, which is otherwise
a major chore.

Note that this method is related to one used previ-

ously by Wunsch [1988] and Uemery and Wunsch [1990]
for estimating boundary conditions using transient trac-
ers. Those authors determined the tracer boundary
conditions which best fit observed tracer distributions

(in space and time) in the interior ocean. However, as
will become clear later, the tracer approach is comple-
mentary to ours: we aim to estimate the interior ocean

state which best fits observed, but noisy, boundary con-
ditions.

There is no guarantee that the linearization is valid:
the OGCM/data differences must be assessed in detail.

Furthermore, to usefully combine observations with a
model, one must be able to show that their differences

are consistent within the uncertainty estimates for both.

A full model/data consistency check is an important

study in its own right and will be presented elsewhere
[e.g., Stammer et al., 1996].

Here we seek only to make it plausible that the de-

viations of data and model satisfy a linear set of equa-
tions. Stammer and Wunsch [1994] show the differences

between a 3-year mean sea surface height field obtained
from the global Semtner and Chervin [1992] model with

1/40 horizontal resolution relative to a 1-year mean of
T/P sea surface height observations. Deviations are

generally found in the 10 cm range on large spatial
scales with length and velocity scales of the order of

500 km and 10 cm/s, respectively, leading to a Rossby
number, R -- U/fL, of the order of 10 -2 to 10 -3 in mid-

latitudes. The small Rossby number limit is by itself in-

sufficient to justify a linear physics on large scales; a ref-
eree has, in particular, noted that geostrophic motion of
the second kind, i.e., obeying the classical thermocline

equations, is intrinsically nonlinear. However, over the
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Figure la. Domain of the Pacific Ocean model and
the number of model layers which reflect the topogra-
phy used during the estimation studies. Vertical extent
of layers is 100, 500, 1000, and 2400 m (from top to
bottom), giving a maximum model depth of 4000 m in
the center of the figure.

timescales we are treating, the oceanic response appears
to be dominated by near-adiabatic, wave-like motions

which are linear. Our fundamental justification is that

the method being used appears to "work" in the sense
that the principle of superposition applies for scales and

amplitudes of the observed differences and for periods
up to a year.

We will postulate, in addition, that modeling skill
will continue to evolve so that even if some present gen-

eration model fails the test of closeness to the data,

future models will eventually pass it. (By this means,
we achieve a separation of the most immediate prob-

lems involved in model construction from those arising

in devising estimation procedures.)
The model will be forced to consistency with observa-

tions on large scales, and there is an additional assump-
tion that such a model will then also have greater skill in

its computation of the smaller scales (e.g., mesoscales)
through the scale coupling present in any model, even
a linear one. Alternatively, one could force the model

6CfN
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to consistency with the small scales and anticipate im-
proved skill on the large scale. The actual extent

to which OGCMs are controllable through boundary
observations confined to restricted ranges of scales is
largely unknown. One seeks ultimately to use the al-

timetry at all scales available from alongtrack data; we
confine the present discussion to long wavelengths be-
cause it provides an adequate basis to test and demon-

strate the method without straining the available com-

puter resources. (There is a resemblance in our strategy
to that used by Fukumori and Malano¢¢e-Rizzoli [1995]

in a different dynamical setting.)
The paper is organized as follows: The model setup

for the Pacific basin is described in section 2. Section 3

discusses the methodology of estimation using altime-
ter data with pressure Green's functions. Their initial-
ization and successive evolution are discussed in some
detail in section 4. The state estimation method is il-

lustrated in section 5 using synthetic data to provide
insight into the potential of reconstructing the oceanic

state (three-dimensional flow field and tracer distribu-
tion) from surface height/pressure observations. Real

T/P sea surface height observations are used in section
6 to infer the present-day Pacific circulation and mass
distribution.

2. Model Configuration

The model used in this study is the primitive equa-

tion Geophysical Fluid Dynamics Laboratory (GFDL)

model [Bryan, 1969; Coz, 1984], implemented for
present purposes in the Pacific Ocean north of 30°S

with realistic coast lines and bottom topography (Fig-

ure la). Because the GFDL model is widely used, only
those elements necessary to understand the present con-

figuration will be summarized here.
The underlying governing equations which make use

of the Boussinesq, hydrostatic, and traditional approxi-
mations are conservation equations for momentum, vol-

ume, potential temperature 0, and salinity S, aug-

mented by a diagnostic equation for density. Bottom

and side walls are insulating, i.e., [an(0, S) = 0]. A
no-slip side wall condition is imposed and the bot-
tom is "free-slip." At the surface there is a rigid lid,

6ff'N
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Figure lb. Sea level elevation (in centimeters) and
surface current fields of the model after a 23-year spin-
up phase. Every second velocity vector is plotted. Bold
and thin lines indicate positive and negative sea level
elevation with a contour increment of 10 cm.

I4(Y 160 ° loft" 200* 220 ° 240* 260 ° 21_O°E

Figure le. Surface temperature field corresponding to
Figure lb.
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Figure ld,e. (d) Coarse 10 ° by 10 ° grid, on which the

Green's functions where calculated in layers 1 through

3. (e) Owing to geographical shoaling, the bottom layer

has a smaller geographical extent on the coarse grid.

and the momentum flux is given by the wind stress

[O=(u,v) o¢ r_,¢], with _,¢ being longitude and lat-

itude, respectively. Surface heat and freshwater (salt)

fluxes are mimicked by Newtonian damping terms, with

the model O and S fields relaxed toward Levitus's an-

nual mean surface 0Lev, SLe v fields as Ho = 9"(0Le v -0)

and Hs = 9'(SLe v - S) with timescale 9"-a.

Because our main intention here is the exploration of

the method in the context of real data, a limited model

resolution is adopted, with a 1 ° horizontal grid spac-

ing and with only four layers in the vertical of thickness

100, 500, 1000, and 2400 m (from top to bottom). The

maximum model depth is 4000 m. The southern wall

and the Indonesian passages are artificially closed for

this specific realization. Although this configuration is

somewhat limiting in providing a highly realistic model

of the circulation of the Pacific, it significantly simpli-

fies the situation without changing the fundamental na-

CIRCULATION FROM ALTIMETRY

ture of the problem. In future applications, the resolu-

tion will be increased substantially, and ultimately, the

model will have a global domain.

Starting from Levitus's [1982] annual mean 8 and S

distributions and a resting flow field, the model was in-

tegrated forward for about 18 years (160,000 time steps)

with a mean surface wind stress provided by Trer_berth

et al. [1989] from routine analysis of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) on

a 2.50 x 2.5 o grid and averaged over the period 1980 to

1986. The time step At was 1 hour, and parameters

for mixing and diffusion were used as listed in Table 1.

Owing to the relatively strong surface T and S forcing

and its damping effects on the surface pressure Green's

functions (see below), the relaxation time scale 9,-1 was

increased from its initial 30 days to 100 days, and the

model was integrated forward another 4.5 years (40,000

time steps), giving a total of roughly 23 years of spin-up.

The surface pressure and velocity fields at the end

of the 23-year spin-up are shown in Figure lb. The re-

lated surface temperature field is shown in Figure lc. In

the North Pacific, the major circulation components are

simulated. However, because of the low vertical resolu-

tion, there is not much resemblance to observations in

the tropics, and the circulation south of the equator is

dominated by the artificially closed southern boundary.

3. Methodology

The estimation procedure introduced below is for-

mulated for observed model/data differences in surface

pressure. Our goal is to describe those differences as

a solution to linear model dynamics in terms of model

Green's functions, using all observations available dur-

ing a period r. As explained below in detail, the result

is a linear inverse problem for a set of disturbance coeffi-

cients, which is then solved. Generally, the linear model

can be set up on the full OGCM grid. (To avoid ambi-

guity, the original model will henceforth be referred to

as the "OGCM.") However, consistent with the scale ar-

gument given in the introduction, the linear estimation

problem is defined on a coarse grid, obtained by dividing

the ocean into a series of three-dimensional rectangular

boxes of horizontal scale L = 100 with spatial cover-

age as shown in Figure ld. A stack of such coarse grid

boxes occupies the whole water column with vertical

Table 1. Model Parameters

Parameter Symbol Value
Resolution

Horizontal A¢, AA
Vertical Az

Maximum depth H0

Time step At
Relaxation coefficient g -x

Horizontal mixing Ahm
Vertical mixing Arm

Horizontal diffusion Ahh

Vertical diffusion Avh

1 °

100, 500, 1000, 2400 m
4000 m

1 hour

30/100 days
104 m 2 s-I

10 -2 m _ s-I

107 m 2 s-1

0.5× 10 -_ m 2 s -1
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dimensions defined by the layer thickness. Boxes next
to the lateral boundaries are not included in the set of

perturbed regions because the presence of intense cur-
rents and other boundary effects can more readily lead

to violations of linearity. The bottom layer (Figure le)
has a smaller geographical extent owing to topographic
shoaling. Only disturbances larger than a horizontal
scale L will be examined in this paper. However, in

more elaborate applications, this limitation will be re-
laxed, permitting smaller scales in the estimation pro-

cess. Ultimately, one needs to take all scales into con-
sideration. The result is a linear model, which is much
reduced in dimension from that of the OGCM, both be-

cause of the coarser spatial resolution of the former, but
also because the linear model physics are now embodied

mainly in the (stored) Green's functions rather than in
the full model state vector itself. Achieving this state
vector dimension reduction is one of the chief goals of

the present method.
For notational simplicity, we will apply a one-di-

mensional counting index to the full three-dimensional

grid. In addition_ t -- {0,1,2,...,t]) denotes a dis-
crete time index with tf defining the period of inversion

r I = t] • At, and At being the time step of the linear
model. At can differ from the time step of the OGCM

and is chosen here to equal the 10-day sampling period

of T/P. The final time t] corresponds to a 1-year period
of T/P data. The sensitivity of the results to the linear

model time step and the length of the data period are
subject to further investigation.

To establish notation, we write the linear homoge-
neous model in canonical form as

p(t ÷ 1) = T(t)p(t) (4)

with initial conditions p(t = 0) -- P0. Here Y(t) is a

matrix operator, and p(t) is the oceanic state vector at
discrete time t -- {0, 1, 2, • • .}. Given a pressure Green's

function, GP(t, g), defined from

GP(t + 1,t') -- V(t)GP(t,t'),

with initial conditions GP(t, t _) = 6_,t, (6t,t, being the

Kronecker symbol), a solution to (4) can be written as
[e.g., Roach, 1982]

p(t) = E P°(t')GP(t't')" (6)
t'

We use the superscript p, denoting the pressure Green's
function, because later we use the associated tempera-
ture, salinity, and velocity disturbance fields, to be de-
noted G e, G s, and G _, respectively.

For the state estimation procedure we make use of

(4)-(6). For this purpose, a linearized version of the
fully nonlinear model is derived empirically, by disturb-
ing the spun-up, and forced OGCM by a small pertur-
bation. The subsequent model evolution (over a 1-year

period) relative to a similar, but unperturbed, parallel
run defines the linear model according to (4), with the

state vector p(t) denoting the difference in the states

of the two parallel OGCM runs. Accordingly, we de-

rive the impulse response function, G_,j(t,U), of the
linearized model as the time-evolving response of the

perturbed OGCM relative to an unperturbed parallel
run, at any grid point i of the full three-dimensional
OGCM grid and at discrete time t, with a unit ampli-

tude pressure anomaly imposed at grid point j and at

t = t'. By definition, G_j(t',t') = 1, and

a ,j(t, t') -- < t', (7)

the latter condition stating causality, i.e., the model

will not have responded to future perturbations. Here
and below, the indices i denote the grid points where

a response is observed, while the j grid corresponds to
points at which perturbations are permitted. (There

is some ambiguity introduced by our use of the label
"Green's functions." We do not expect our empirical

linear model to be self-adjoint, and for such systems
a second set of, adjoint, Green's functions can also be

defined [Morse and Feshbach, 1953]. Our definition of

G_,j(t, t') is that of a unit impulse response function for
the linear model itself as defined in (6).)

Note that the linear model is obtained here through a
"black-box" procedure, in which the impulse responses

are found empirically, assuming that the OGCM will
respond in a linear fashion to small, local perturba-

tions. However, we also will make use of the simplifying
assumption that the Green's functions are translation

invariant in time, that is, GP(t,t ') = GP(t - t',0). If
the model basic state changes significantly, e.g., if there

are large seasonal fluctuations, this assumption will fail,
and we would be forced to compute different Green's
functions for different seasons. The major drawback

to such a need would be greatly increased storage re-

quirements. Within the limits of the available altimeter
data, we have found no indication that this refinement
is necessary.

We assume now that Green's functions _Gr_,i(t,t_)}
have been determined for a complete set of j points,

j = {1, 2,..., J}, and shift to the estimation problem.
In the present context of altimetric sea surface height
data, observations are restricted to grid points residing
in the coarse resolution surface layer S C B, where S

denotes grid points in the surface layer and B is the
three-dimensional grid. Then

fp,(t) = - i • s (8)

defines the difference in surface pressure between the

OGCM first estimate 15i(t) and the observed value

gp(_i(t). The first estimate /hi(t) is obtained by inte-
grating the OGCM forward in time starting from the
given initial state with prescribed boundary conditions.

In the absence of any of the errors discussed below,

the [pi(t) defines the "observations" for our linearized
estimation problem. However, in practice, there are al-
ways errors present, and instead the observations must
be written as

U,(t) = 6-p,(t) + ,_(t). (9)
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According to the definition of tfpi(t), the term hi(t)

arises from errors in both the data and the model (see

below). We seek to find the best estimates & of the
true forcing coefficients a and their corresponding un-

certainties P_,_ (see (20)), which lead to a best fit _p
of the true 6p in an optimal sense,

j t!

j=l t'=0

j t!

= a,(¢la.'j(t- t', 01, (101
j=l t'=0

plus an estimate of the yet to be determined residual
(noise) term _i(t). This state estimation process can
be interpreted as the projection of the noisy "observa-
tions" onto the dynamical set of linear basis functions:

the Green's functions. In (10), the second equality fol-
lows from translation invariance in time• At the final

time step tl, the convolution (10) is carried over the
entire period for which data are available. However, if
a disturbance in the ocean were fully dissipated after,

e.g., 50 days, then t I could be reduced, accordingly. In

our application, t! is assumed to be the whole 1-year
period of T/P data.

An estimate/3i(t) of the true absolute pressure pi(t)
at any location of the full model domain i and at time

step t, consistent with altimetric surface observations,
is then obtained from the sum

+&,(t). (11)

We pause here to introduce an example: suppose, hy-

pothetically, the OGCM predicts the correct pressure
at t = 0 and subsequently everywhere in the model do-
main, except for the contribution owing to an unknown

perturbation at grid point J0 at t = 0, which subse-
quently propagates through the model area. Such a
perturbation could, e.g., be associated with an error in
the wind stress field, used to derive the OGCM. Then

determination of ajo(0 ) properly initializes the model,

while all c%(t'), t' > 0, and all aj(t'), j # jo, at all t',
vanish. In this special case, (10) would read

gp,(O= a.(0)Vf, o(t,0), (12)

which provides a perfect estimate of the anomaly every-

where for all future times, and the sum (11) would re-
produce the observations with no further correction re-

quired. A further unpredicted disturbance at the same
grid point j0 and t = 1 would require the determination

of the two unknowns &to(0), &j0(1), leading to

&,(t) = 0)+ a.(1)v,';o(t, 1). (la)

In general, one solves simultaneously for all &j (t') using
all the observations, and summing over all j produces

the general linearized response (10) at grid point i E B.
The collection {aj(t')} represents the state vector of

the linear model. The assumption of linear dynamics

made in (8)-(10) is that disturbances are superposable
to adequate accuracy.

The process of model correction in (10) can be
thought of as one of constantly reinitializing the lin-

ear model to the extent that unpredictable forces act,

or disturbances propagate into the estimation domain.
The determination of the required perturbation values

(corrections) is made in such a manner that the result-
ing model trajectory best fits the observations over the

entire data period and model domain in a way consis-
tent with the linear dynamics inherent in the Green's

functions. This procedure contrasts with the so-called

"blending technique" [e.g., Ghil and Malanoite-Rizzoli,

1991], by which models are re-initialized by direct in-
sertion of the most recent observations.

In our context, T/P observations are prescribed only

on the coarse grid in the surface layer i = {1,-.•,I}.
To render the estimation problem at its simplest level,

j could similarly be confined to the coarse grid sur-
face layer, i.e., the special case in which external dis-

turbances are confined to the surface. In either case,
the collection of observations over the complete data
time span form a set of simultaneous equations for the

unknown coefficients a = {aj(t')}:

a_,l(1,0 ) ... G_j(1,0 )

: : ..•

a_,,0,0) ... G_,A1,0)

: "%

a_,,(tl,o) ... a;,Aq,o) a_,,0,0)
: : ...

aL(tj,0) ... a;,Aq,0) c;
_,(o) -_(0 ]

:

_(0) "_0)

: + !
_,(q - I) ._(t,)

: i

_(q - :) . -,(q)

In matrix form, (14) is

0 ... 0

0 ... 0

... a_(1 0)
:

0,0) ... a A1,0)
y,(1)

v,O)

=

v,(q)

y_(q)
(14)

GPc_+n = y (15)

where n represents the noise in all positions at all times
and y respresents the collection of observations. How-

ever, more generally, one must accommodate distur-
bances at depth, which can arise both from initialization

errors and from errors propagating into the estimation
domain. Then (10) is generalized to having the j grid
distributed over the full three-dimensional domain with

the surface observations being a summation of contribu-

tions from perturbations occurring in all model layers.

The Green's function G_j (t, t') is then the response ob-
served in the surface layer at grid point i due to a pres-
sure disturbance imposed at time step t' at any surface
or subsurface location.

In an equivalent formulation, which provides further

insight into the vertical structures giving rise to ob-
served surface perturbations, one would rewrite each
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Green's function as a set of vertical basis functions.

Suppose, for example, that the ocean has a flat bottom.

Then the linear dynamical modes m -- {0, 1, 2, ..M}

would provide a natural choice of a vertical basis. Dis-

turbances at point i would then be composed of pertur-

bations by mode m, and resulting anomalies 6pro(t)

would be the history of the pressure anomalies of each

mode m. Empirical orthogonal functions (EOFs) or

any other basis could be used similarly. However, be-

cause linear dynamical modes in the presence of varying

bathymetry are defined only locally, we use formulation

(15), in which each of the coefficients excites energy in

the vertical modes. Including the subsurface coefficients

permits one to construct the equivalent of modes, either

barotropic or baroclinic.

The system is a linear time-evolving one, and there

are several options for determining the state vector &.

To render the discussion simple, we will consider a solu-

tion obtained by the method of singular value decompo-

sition (SVD [e.g., Wunsch, 1996]) which uses the entire

domain of observations all at once. If (15) becomes too

large, sequential methods, such as filters and smoothers,

or recursive methods can be employed. Application of

these standard approaches would normally lead one to

use the canonical form (4) ( Y is readily determined

from G p by (5) [see Menemenlis and Wunseh, 1996]).

We solve (15) after column scaling, written as

1 1

GPW-_W_a +n=y, (16)

where W has the diagonal form

W = diag{(.-.hl/H0.-.), ('-'h2/Ho"'),

(...h3/Ho" "), ('-'h4/Ho'")} , (17)

with hi denoting the layer thickness of the ith layer

and H0 is the total depth. Let the SVD of the Green's

function matrix GPW - ½ be

GPW-_: UAV T, (18)

with U and V containing the left and right singular

vectors, A having the singular values on its diagonal,

and the superscript T denoting the transpose. Then

the estimated state vector & is

& = W-½VKA_IU_y, (19)

with an estimated uncertainty

poa:<(d _,_)(& _,_)T >

-2 T T T
= (VrA K Vr+q rt. Q. )

(20)

distinguishing the true a from the estimated one cl .

Here K is the rank of the system and is determined

in practice by prior assumptions about the white noise

variance cr_ and the magnitude of the singular values

),i (not to be confused with longitude A); the noise is

discussed further below. Column vectors of Q_ are the

null space vectors, R_, is the second moment matrix

of the null space coefficients, and P_ is the sum of

the noise uncertainty and the uncertainty from the null

space variance. Information about R_a must be pro-

vided from prior information; in its absence, one can

speak only of the unresolved components. See Wunseh

[1996] for further details.

Given estimated coefficients &, the linear model vari-

ables are obtained on the full three-dimensional grid,

i E B, from equations like (10) as a function of time,

with
J t!

: F_, t',o) (21)
j t':0

J t!

6v,](t) : - t', 0) (22)
j t':0

where the matrices G [9's'v] describe the response of the

temperature, salinity, and velocity fields to the associ-

ated pressure perturbation. The velocity field also fol-

lows readily from the resulting pressure field by geostro-

phy, and in practice, _v_(t) was found this way.

Uncertainties of the estimated fields are obtained

from

Ppv= GPP_G pT (23)

P[0,s,v]= G[_'s'v]p_G [e's'v]T (24)

A few additional comments seem to be useful. First,

the linear model trajectory is taken about the prior es-

timate OGCM state in an assumption essentially the

same as used in what is known as the "linearized

Kalman filter" [see Wunsch, 1996]. A generalization

would be to linearize about a new state (the OGCM

plus linear model state) which in the sequential es-

timation context, leads to the "extended Kalman fil-

ter" and associated smoothers. There is a parallel set

of linearizations used in adjoint/Pontryagin principle

methods in which the adjoint model represents a lin-

earization about the instantaneous OGCM state, which

will change through the iterative solution used in that

method. There is also a close connection of the present

method with that of "representers" (see Bennett [1992]

for details). As with any filter-smoother approach, (14)

uses observations from the entire estimation period to

determine the estimated state at any specific time. This

can be understood by recognizing, e.g., that a(0) is mul-

tiplied by G(N, 0) to couple future observations with

estimates at prior times.

No attempt has been made here to evaluate directly

the relative numerical efficiencies of the present "whole-

domain" approach relative to that of a sequential or

other solution method (although, in general, whole

domain methods, because they do not require multi-

ple computations of the error covariance as filters or

smoothers do, are far more efficient). Our focus is on

demonstrating the concept of numerical linearization as

a workable methodology. In general terms, however, the

Green's function approach can be thought of as being

related to an inverse operator which is vastly reduced in

dimensions to contain only that kernel required by the

specific data type and distribution: the surface pressure
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boundary condition. In contrast, the adjoint operator
of the (linearized) model would need to invert the com-
plete model state in space and time.

It is possible that when Green's functions solu-

tions are computed with high resolution, numerical
pathologies will arise requiring spatial and/or tempo-
ral smoothing, but we do not yet have experience with
this situation.

Because observations are taken here to be model/data
differences, the "noise" ni(t) represents all the errors of

the perturbation pressures at the surface, including re-
maining environmental or geophysical data errors from

such sources as tides and orbits, and errors due to miss-
ing model physics and insufficient forcing fields and for

processes on scales smaller than the dimension of the
Green's function representation areas. We will gener-
ally assume that

< n(t) >= 0, < n(t)nT(t) >= R(t),

< n(t)nT(¢) >= 0, # ¢. (25)
The determination of the actual noise level and struc-

ture must be addressed using real data. Systematic

model errors will not be adequately represented through

the joint covariance R, nor will systematic (geograph-
ically correlated, time-independent) errors in the T/P
observations. Careful posterior tests are required to test
the assumptions. Uncertainties in G p are also present
owing to the initialization procedure and the subsam-

pling scheme. Discussion of the influence of such errors
en the results is a nonlinear problem (sometimes called

"total leastsquares" [e.g., van Huffel and Vandewalle,
1991; Wunseh, 1996]). We will ignore such errors in
this present discussion.

4. Finding Green's Functions

Conceptually, we seek to determine the response of
the spun-up OGCM to an initial, regionalized, and
weak, surface elevation/pressure perturbation

((¢, ;_) = (06r,ro6t,t0 (26)

confined to a single surface grid point at the geographi-

cal location r0 = (¢0, A0) in the surface layer. However,
with a rigid lid, the surface elevation is not part of the
OGCM state vector, and we cannot directly perturb the

model with a surface pressure perturbation. To within
the quasi-geostrophic approximation, however, the re-

sponse to an initial geostrophically balanced vortex,

v = × (27)

again confined to a single surface point as _(¢, A) =

_0exp {- [(), - _o)2 + (¢ _ ¢0)_]/L 2} (Figure 2), is
equivalent to imposing a pressure perturbation on the

model. The spacescales and timescales are extended
to L = 5° and r = 5 days to represent an initial

pulse-like perturbation after its geostrophic adjustment
process on a rotating sphere. The general problem of

geostrophic adjustment has a large literature going back

Ļ-. %

i ', '_J "_Geostrophy| ...,,_I!.. _ !

I l

4::-.-.-.:-:;-.:..................!......................................................................!

301 i i
121 180 270E

Figure 2. Schematic of the model perturbation.
An initial height disturbance is transformed into a
geostrophically balanced vortex, which is imposed on
the model surface layer. See text for details on
spacescales and timescales of the initialization proce-
dure.

at least to Hough [1897], and including the famous pa-

per of Rossby [19361. Blumen [1972] and Gill [1982]
provide comprehensive reviews. From those studies, an
initial adjustment timescale of the order of several in.
ertial periods is found.

Green's functions were computed and stored for ini-

tial disturbance (27) in each of the coarse grid points.
The linear model pressure Green's function G p is ob-
tained by the normalization of the resulting time series

of the pressure perturbation by its maximum value (re-

sulting in G_(0) = 1). The matrices G[ °,s,v] are ob-
tained from {he related temperature, salinity, and ve-

locity fields.

The adjustment process of the interior ocean to sur-

face pressure disturbances is of interest in its own right.
(One must distinguish perturbations within the upper-

most layer of the ocean from those imposed as atmo-
spheric loads; for the latter, see Ponte, [1992], and Wun-

sch and Stammer, [1996].) We confine the discussion
here to a brief summary of the response as obtained
from the numerical model. Analytical solutions of rele-

vance to our computations can be found in the works by
Bolin [1953], Fjeldstad [1957], Longuet-Higgins [1965],

aeisler [1970], Philander [1978] and Blumen [1972]. In
a different context, a related model response obtained
from a subsurface density perturbation was analyzed by

Sarmiento and Bryan [1982], which in its mass trans-
port stream function shows a wavelike pattern in the

central North Atlantic, very similar to the results dis-
cussed below.

The response of the model to a localized surface pres-
sure disturbance associated with the isolated vortex

(27) centered at 35°N, 220°E is depicted in Figure 3 in
terms of its surface pressure and flow field after t = 16

and t = 41 days (from now on, we use t as dimensional

time). An expected asymmetric pattern of a radiating
Rossby wave field is visible, which rapidly spreads over
the entire basin and reaches the Kuroshio within about

10 days. The dominant wavelength decreases with time,

as the longer waves are reflected and dissipated. Af-

ter about 50 days, the barotropic wave field is largely
gone. The influence of topographic features such as
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Figure 3. A Green's function, illustrated from the surface pressure and velocity fields (top and
bottom panels, respectively) at t = 16 (left) and t = 41 days (right). The initial perturbation
was imposed at 30°N, 215°E. Note the pronounced influence of the bathymetric features on the
propagation characteristics of the developing fast Rossby wave field. Maximum values are clipped
in Figure 3a. The contour increment is 0.1 cm.
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Figure 4. Same as Figure 3, but for a perturbation imposed at 5°N, 215°W and subsampled
at t = 25 days (left) and t = 58 days (right). Unlike the perturbation in midlatitudes, the
enhancement of a low-mode Kelvin wave at the equator and its reflection at the eastern side is
visible. The contour increment is 0.1 cm.
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theHawaiianRidgeor theEmperorSeamountChain
is apparentin Figure3b,effectivelyblockingthefast
barotropicwaves.

The modelresponse,whichin midlatitudesshows
predominantlywestwardpropagationoflocallyimposed
signals,isalteredin thetropics:avelocityanomalyim-
posedat 5°N,215°E(Figure4) generatesa fasteast-
wardmovinglow-modebaroclinicKelvinwavealong
with a westwardgoingbaroclinicequatorialRossby
wave.TheKelvinwaveispartiallyscatteredbytheEast
PacificRisebeforereachingtheeasternboundary.In
agreementwith thetheoryofequatorialdynamics[e.g.,
Philander, 1978], the low-latitude disturbance, being
predominantly baroclinic in vertical structure, spreads
zonally but does not penetrate far into high latitudes.

In the vertical, the model response is generally a sum
of all dynamical modes (the barotropic plus three baro-
clinic) which are excited by the initial disturbance. Fig-
ure 5 depicts a zonal section of the meridional velocity 0

component through the center of the initial disturbance

over a 1-year period. As can be seen from the figure, 500
the fast initial barotropic response is followed by the
emergence of increasingly high baroclinic modes, each
of which moves westward with its associated Rossby 1ooo

wave phase speed. The anticyclonic vortex imposed ini-

tially only in the surface layer induces an ageostrophic 2200
flow component into the vortex center and an associated

secondary vertical velocity field (not shown) with down-
welling in the vortex interior and upwelling at the outer 3_oo

edges which is associated with the return flow in the
vertical. The consequent shift of the isotherms leads to

0

a warming in the vortex center and a cooling at its outer
edges. The complex interior response is important in a
general sense: surface elevation/pressure is coupled to 500

interior motions over the entire water column, motions
which we can hope to infer from an inverse computa- t000
tion.

When a perturbation is introduced in a subsurface

layer, a number of expected changes can be observed. 2200

Figure 6 shows the response to a perturbation in either

of the four layers at 35°N, 205°E after 83 days. The re- 3400
mote barotropic field is largely independent of the spe-

cific depth of the initial disturbance. In the nearfield,
0

the details of the baroclinic response are different. Con-

sistent with the dominance of the first baroclinic mode,
the immediately overlying surface response to a pres- 500

sure disturbance in layers 3 and 4 is of opposite sign, in
contrast to a perturbation imposed in the two surface t000

layers. In addition, details of the energy partitioning
of baroclinic modes depends on the depth of the initial

perturbation (e.g., giving rise to enhanced second-mode 2200

energy in low latitudes when initialized at middepth).

5. A Twin Experiment

We now turn to the estimation problem: to calculate
the full three-dimensional oceanic state at all times of

interest as outlined in section 3, given only altimetric

observations of the sea surface elevation field (or equiv-

alently, the related geostrophic flow in the surface layer)
and a model forecast.

Although our primary interest is in the results from

actual data, we nonetheless will digress briefly to de-
scribe the results obtained with perfect "data" from a

so-called twin experiment. Real observations raise ques-
tions which are rarely encountered in discussions of es-
timation with artificial data, but use of artificial data

permits us to isolate problems with the method which
are independent of the complexities of real observation

uncertainties. The purpose of this intermediate step is
to establish the estimation problem in the presence of
a completely known ocean state. Because of the ab-

sence of good in situ data coverage simultaneous with
the altimetry, a twin experiment is the only basis for

exploring a comparison over the full depth range.
Starting from the spun-up state, the OGCM was inte-

grated forward for one additional year, the time history

3400
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Figure 5. Zonal sections of the northward (v) veloc-
ity component (corresponding to Figure 3) through the
center of the initial velocity perturbation for (a) t = 16,
(b) 41, and (c) 410 days. Negative values are stippled.
An arbitrary contour increment is shown, to indicate
vertical structures.



STAMMERANDWUNSCH:PACIFICCIRCULATIONFROMALTIMETRY 18,419

220' 240" 260" 280,E

@ b
140" 160" 1BO ° _00" 140 a 160' 180" 200" 220* 240" 280, 280,E

c d

Figure 6. Sea surface pressure fields, which result from putting velocity perturbations into layer
(a) 1, (b) 2, (c) 3 and (d) 4, after 83 days. The contour increment is 0.05 cm.

of which gave the first-estimate reference state. To gen-

erate artificial "model data," the OGCM forcing was
changed from constant to monthly mean wind stress
values, and run for an additional 10 years into a new cli-

matological equilibrium. The subsequent eleventh year
was taken as the "true" state, which is supposed to be
recovered from the surface "observations," in our frame-

work, taken to be the surface elevation anomalies refer-
enced to the previous reference state. As an example,

Figure 7 shows instantaneous anomaly fields of surface
pressure and velocity, representing winter conditions.

Such anomaly fields were sampled on the coarse grid
every 10 days over a 1-year period to form the vector of

observations y as stated in (14).
To obtain more insight into the problem of estimating

the full ocean state from surface height/velocity obser-

140' 160" 180" 200* 220* 240* 280" 280"E

Figure 7. Instantaneous difference fields of p, and hor-
izontal surface velocity v between the synthetic "model
data" and the OGCM first guess, representing winter
conditions. The contour increment is 10 cm.

vations, various experiments were performed, all listed
in Table 2. In a first experiment, labeled G1, both ob-
servations and coefficients _t are confined to the coarse

grid in the surface layer only. There are then 2590 un-
known values (74 points times 35 time steps of 10 days

each), and an equal number of observations connected
by (14). Confining the unknowns to the surface layer

is equivalent to the assumption that only in the surface
layer do unpredictable changes take place, e.g., because
the wind perturbed the system. Changes in the thermo-

cline are then uniquely coupled to surface expressions

through vertical dynamical modes. Knowledge of the
forcing coefficients in the surface layer are assumed to
completely control the deep ocean.

In a second experiment, labeled G2, the _t are allowed
to be nonzero in all four layers over the full data period,

thus producing 8960 unknowns in 2590 equations (15).
Here we make the extremely pessimistic assumption

that disturbances leading to later changes in surface
pressure can appear at depth within the model domain

from unknown causes, e.g., missing model physics. It is
plausible that such perturbations can enter the domain
at depth across the lateral edges, but permitting them

also within the interior represents an extreme case.
Two further experiments were performed which are a

combination of the previous two scenarios. The first of

Table 2. Definitions of the Four Twin Experiments

Exp. Comment
G1 c_ # 0 only in surface layer for all t
G2 a # 0 in all four layers for all t
G3 same as G1, plus ct # 0 in all layers at t = 0
G4 same as G1, plus a _- 0 in all layers at t = 0 and

along lateral boundaries for all t
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Figure 8. Singular value distribution from the two
cases G1 and G3. See text and Table 2 for details on

the experiments.

these, G3, is basically experiment G1, but with nonzero

oL(0) in the full water column, equivalent to permitting
an initial model correction over the full water column.

Later developments are, however, through surface forc-
ing perturbations alone. Finally, G4 includes in addi-

tion to G3, all o_(/'), t' > 0, along the lateral boundaries
of the coarse grid, thus accounting for perturbations

which might enter into the estimation domain at depth
from outside the domain.

The singular values h_ of the two cases G1 and G3
are depicted in Figure 8. Formally, both systems are

full-rank (the same being true for the other two cases),
with no singular values actually vanishing. For G1, the
full rank means that the solution is completely resolved
and would be perfect if the synthetic observations were
actually perfect. There are five very small hi, how-

ever, and some rank deficiency is expected. Errors do
arise from the loss of spatial resolution in moving to

the coarse grid, and from edge effects in the averaging.
When the five very small :_i and corresponding singular
vector structures are dropped, some data and solution

resolution is lost, basically confined to the tropics, and
mainly at the beginning and end of the 1-year time pe-
riod. A somewhat more realistic situation is obtained

by taking the effective rank as K -- 1500, which im-
plies a noise level of about 3% of the surface elevation

variance. (Results are not very sensitive to the specific
rank. The value of K -- 1500 was chosen here for con-

sistency with the application to T/P data described in

the next section.)
For G3, and similarly for G2 and G4, the hi vary only

over about 2 orders of magnitude. Whether full rank
or not, cases G2 to G4 are always formally underdeter-
mined, and one normally expects to use prior statistical

information and understanding in finding a best solu-
tion. In the spirit of exploring a somewhat pessimistic

situation (G2), we assumed only that the solution &
has a variance inversely proportional to the layer thick-

60.N.

40.

2O=

-20"

Figure 9a. Diagonal elements of the data resolution
matrix T_, = UU T, which results from a rank reduction
to k = 1500 and plotted for t -- 100 days in geographical
order.

nesses (smallest in the deep water). For G3 and G4, we
altogether suppress any significant variances in &(t') in

the interior, except at ff -- 0 for an initial correction

(G3) and along the lateral edges in layer 2 and 3 for
ff > 0 for G4. A useful refinement (not done here) would
be to impose larger variances near western boundaries
or near mean currents. The imposed variances could

come from the model itself, or from observations of any
kind.

G1 and G3 produce basically identical results, but
the latter case is more physically attractive and we have
chosen it as the standard "best case" to be described in

more detail. Differences in the other experiments and

the physical implications are discussed subsequently.
In the present artificial situation, the main issues are

those of resolution. A typical mid-data-stream spatial

pattern (corresponding to t -- 100 days) of data and so-
lution resolution is displayed in Figure 9 on the coarse

grid. The fields are obtained assuming an effective rank
of K -- 1500, in which modes with small spatial scales
and timescales are mostly suppressed. Generally, the

data resolution (Figure 9a) is enhanced in higher lat-
itudes and is small along the equator, with minimum

values residing along 5°S in the eastern basin. In addi-
tion, some fine structure is visible, which to a limited
degree shows a correlation with the bathymetry, e.g.,
along the Emperor Seamount Chain and the Hawaiian

140. 160. 180" 200' 220* 240* 260 ° 2B0*E

Figure 9b. Same as Figure 9a but for solution (param-

eter) resolution matrix T_ = VV T in the first model
layer.
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Figure 10. Time means of (left) 6p(t) and (right) tfpob,(t) in centimeters in top three model
layers (from top to bottom) at all 74 locations on the coarse grid.

Ridge. The fact that all values are significantly lower

than unity indicates that no individual datum is fully
resolved, i.e., the system lacks adequate information to
distinguish individual equations from linear dependence

on one another [Wunsch, 1996]. Owing to the presence
of fast modes on large zonal scales, in the band ±10 °

around the equator, individual observations sampled at
a 10 day interval are barely independent of each other.

In particular, data from the eastern tropical Pacific are

least important in constraining the solution. One physi-
cal reason is the presence of the East Pacific Rise, which
hinders the penetration into the interior basin of the

equatorial Rossby waves excited in that area. In addi-
tion, any Kelvin wave generated there soon disappears
at its eastern border.

The solution (parameter) resolution for the same time

step in the surface layer is shown in Figure 9b. Al-
though slightly different in detail, it shows basically the

same spatial pattern and amplitudes as appear for the
data resolution. The similarity suggests a strong, but
incomplete, dependence of the surface layer values of

& on the local measurements. In general, & are deter-
mined as linear combinations of the elements of the true

value o_, owing to a less than full rank system. Again
the tropical area shows the largest deficiencies.

Based on the artificial model observations and the

SVD of the Green's function matrix, corresponding co-

efficients & were obtained from (19) with K = 1500,
and an estimate of the full model state was recovered

subsequently from (21) to (22).
A comparison of the estimated pressure anomaly field

6p with the "true" anomalies is shown in Figure 10 for

the top three layers. Because the bottom layer is only
partially covered by the coarse grid, it is not displayed

here; results, however, are qualitatively very similar to
what is found from layer 3. Shown are instantaneous
fields from t = 100 days, which nonetheless represent

typical situations.
In summary, "true" model fields are simulated in the

top two layers, qualitatively and quantitatively. The
rms misfits are reduced to about 10% of their original

values in the top two layers (Figure 11a), with the misfit
in layer 2 slightly exceeding that of the top layer. Cor-
responding cross-correlation coefficients are as high as
0.95 or above, right from the beginning and over most

of the 1-year period. Although the cross correlation is
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Figure 11a. The rms residuals from the twin experi-
ment at K = 1500 from top three model layers evalu-
ated on all 74 grid points for each of the 35 time steps
and normalized by the initial model/data misfit. Values
from layers 1, 2, and 3 are drawn by solid, dashed, and
dotted lines, respectively.

highly significant in the third layer, growing from an
initial 0.5 to about 0.8 in the second half of the esti-

mation period, related rms residuals vastly exceed the
initial small discrepancy in layer 3.

A close inspection reveals the troublesome areas
to be confined to the northern border of the coarse

grid. There, the Green's functions, being predomi-
nantly barotropic in nature, do not project enough en-

ergy onto the first baroclinic mode, which is necessary
to match the observations. The tendency is, however, in

the right direction, with bar0clinic modes increasingly

gaining energy through the continuous reinitialization.
Improved agreement from assimilation runs lasting for
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_p(t) and 8Pobs(t) as a function of time. Values from
layers 1, 2, and 3 are drawn by solid, dashed, and dotted
lines, respectively.
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Figure 12. Space-time mean of the diagonal ele-
ments of the pressure resolution matrix given as Tp =
GPT_(GP) -1, averaged over the full coarse grid and
time span of data for each layer at K = 1500 (dashed)
and K = 2590 (full-rank, solid).

longer periods can be anticipated. Furthermore, the
predominantly barotropic nature of the Green's func-
tion in these areas is an artifact of the low vertical reso-

lution. Another area of potential problems can be found

in the eastern tropical Pacific, where topographic effects

are likely to be significant.
The reduced skill at depth is readily anticipated from

a resolution analysis of the model and observations, and

it is the availability of this information which would pre-
vent any user of the method from falsely inferring that

the results at depth are better than is warranted, when
the true field was not actually known. Figure 12 de-

picts the pressure resolution Tp = GPT_(GP) -1 as a
function of depth when averaged over the entire time

span of data and over each layer for K = 1500 and

K = 2590 (full rank). Here T_ is the solution resolu-
tion matrix as given in Figure 9. As in (21), the ma-
trix G p is complete, covering the whole space and time

span, including all four layers, and (GP) -1 is the gener-
alized inverse of this overdetermined system. Not sur-

prisingly, the solution resolution degrades rapidly with
depth, even for the full-rank case. Physically, the re-

sult means that pressure anomalies at great depths have
unobservable consequences at the sea surface over time

spans of 1 year. Although longer records will improve
these results, as deep anomalies generate observable sur-

face changes over time, it was the anticipation of this

situation that led Munk and Wunsch [1982] to propose
the complementarity of altimetry and ocean acoustic to-
mography, the latter providing the resolution at depth,
which is difficult for altimetry.

Temperature anomalies _8 estimated from (22) are

compared with the "true" fields in Figure 13, again
taken from t = 100 days and representing typical instan-

taneous situations. The poorest visual agreement be-
tween the inferred and true temperature fields is found
in the surface layer, where the true model state is re-

laxed continuously toward Levitus's climatology. The
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Figure 13. Time mean (left) 6_/'(t) and (right) 6Tobs(t ) in degrees Celsius in top three model

layers (from top to bottom) at all 74 locations on the coarse grid.

rms difference is about 1°C (Figure 14a), and the cross
correlation is as low as 0.4, yet significant, over the en-

tire period (Figure 14b). We infer that the poor agree-
ment indicates the inconsistency of the Levitus numbers
with the model physics in the surface layer. In con-

trast, general agreement of the results with the "truth"
is found in the second layer, where the mean correla-

tion is 0.6. As in the top layer, the largest residuals are
confined to the tropical ocean, where the induced un-
certainties are largest. As a result, the temperature is

systematically underestimated by 20 to 3°C (rms mis-
fit is again close to I°C, globally). In the third layer,
the correlation between observations and estimations is

only marginally significant. Again an estimate with in-
creased accuracy in the deep ocean can be anticipated
from longer data sets because the dynamical adjustment

timescale in the deep ocean is 1 to 2 orders of magnitude
larger than near the surface.

Summarizing the results from the various case stud-

ies, no significant difference in the estimated state mea-
sured in rms residual amplitudes of the pressure and

temperature fields was obtained from G1 compared to
G3. The effect of permitting &(0) _= 0 in all layers leads
only to slightly decreased residuals in the top two layers

during the first 50 days, but a small degradation below.
Permitting subsurface perturbations over the full time
span during G2 reduces the residuals in surface pres-
sure somewhat, consistent with the increased degrees of
freedom. In the second layer and below, which are not

constrained during the inversion, however, a significant

degradation of the estimated state relative to the truth
was found as compared to the purely surface driven

case. Including only coefficients along lateral bound-

aries (G4) did not show any benefit near the surface (as
compared to G1 and G3), but led to some degradation

in layers 3 and 4.

6. TOPEX/POSEIDON Altimetry

Our central goal is the estimation of the present state
of the ocean given real altimeter data, and in the fol-

lowing, we will discuss the results obtained with T/P
data from the first year of the mission. T/P data
from the 1-year period December 21, 1992, to Decem-

ber 3, 1993, corresponding to repeat cycle 10 through
44, were edited and corrected as described by Stammer

and Wunsch [1994] and King et aL [1994]. Only two
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Figure 14a. The rms temperature residuals from the
twin experiment at K -- 1500 from top three model
layers evaluated on all 74 grid points for each of the 35
time steps. Values from layers 1, 2, and 3 are drawn by
solid, dashed, and dotted lines, respectively.

significant modifications of the standard merged T/P
geophysical data records produced by the project [Be-

nada, 1994] should be noted here because they influence
the results and the underlying errors. First, to obtain

observations of the dynamic sea surface height (SSH),
we referenced the T/P observations to a hybrid geoid

(:IGM-2/OSU91a) derived by Nerem e_ al. [1994], and
Rapp e¢ aL [1991], where the former is used to spherical
harmonic degree 70 and the latter beyond that to degree
360. Second, the tidal correction provided by the T/P

project was replaced by those estimated by Ma e_ al.
[1994] from the first year of W/P data (version UT/CSR

1.4). The resulting mean field of this 1-year period is
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Figure 15a. Mean TOPEX/POSEIDON sea surface
height observation inferred from repeat cycle 10 to 44
relative to the 3GM-2 geoid. The contour increment is
10 cm.

shown in Figure 15a. A mean difference between the
model-predicted surface elevation and that observed by

T/P is shown in Figure 15b. Apart from model er-

rors, the dominant errors in Figure 15b should be those
of the geoid. Although geoid errors are geographically
variable and strongly correlated, for present purposes
they will be treated as homogeneous and "white."

To form a vector of observations, for each individual

10-day period, instantaneous fields similar to Figure 15b
were averaged in 10 ° x 10 ° areas which coincide with the
coarse grid. Resulting fields were subsampled along the

grid points given in Figure ld. The model climatology

and Green's functions were used with the T/P data in
the same way as employed for the twin experiments.
It should be emphasized that the resulting model/data

differences are based on the absolute T/P SSH, not just
the time-dependent part.

We confine the discussion to G3, which was iden-

tified in the previous section as being the physically
most plausible situation. The ability to make inferences

about the ocean circulation is directly dependent upon
the noise level in the observations. The discussion of the

noise level is slightly subtle here because we are simul-
taneously discussing both the time mean circulation,

which is sensitive to geoid errors, and the low-frequency
variability (dominated by the annual cycle), which is to

first order, independent of such errors. A number of
studies of geoid error [Nerem e_ al., 1994; Tsaoussi and

Koblinsky, 1994] would lead to a rank K = 500 corre-

Figure 14b. Cross-correlation coefficient between

_e(g) and /_eobs(_ ) as a function of time. Values from
layers 1, 2, and 3 are drawn by solid, dashed, and dotted
lines, respectively.

140" 1{_0" 180" 200" 220" 240" 260 = 280"E

Figure 15b. The difference of this mean sea surface
height field relative to the reference model state. The
contour increment is 10 cm.
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Figure 16. Forcing coefficients a(t) in centimeters
of equivalent surface elevation at various representa-
tive locations. Shaded areas correspond to the uncer-

tainty of the coefficients as given by (diag{P_}) 1/2 =

(or2diag{VK A _2 V_ })1/2.

sponding to an error at about 20% of the total variance.

This rank will be used for studying the time mean. In

examining the annual cycle, however, the rank is taken
to be K = 1500, corresponding to a noise level a of

about 2.5 cm (roughly a 5% error level), which is more
appropriate to the time-dependent measurements, but

the time means are removed from these results, as they
are regarded as noise-dominated. An alternative ap-

proach would be to completely separate the discussion
of time-mean and time-dependent fields by generating
a new data set from the time derivatives of the obser-

vations. The present method is simpler, however.

In this preliminary attempt, no use was made of
known correlations in the error fields (resulting, gen-
erally in a reduction in the skill of the data compared

to what is actually possible). Use of such correlations
is a high priority for future work.

Consider the higher rank system, K = 1500.
The time histories of _j(t') and their uncertainties,

:i:(c_2diag{P_}) 1/2, are shown in Figure 16 at a few

representative locations j. Uncertainties are computed

140_ 160 _ IBO o 200 _ 22Ce 240 _ 260* 280°E

Figure 17. Time mean coefficients & as a function of
geographical positions.

by taking into account only the first term on the right-
hand side of (20), omitting the unknown contributions
from the null space. In general, the largest amplitudes

occur, as expected, where initial model/data differences
are large at t _= 0, representing the initialization errors

with amplitudes gradually decreasing subsequently to-
ward an asymptotic level.

Systematic differences between the model and the

data appear as corrections of uniform sign over large
areas and long times. Figure 17 shows the average &
over a full year at rank 1500. As in section 3, we can in-

terpret these mean coefficients as representing the con-
sequences of a systematic error in the forcing, e.g., a
wrong wind stress boundary condition, or incomplete

model physics. The correction keeps the model tracking
the observations by depressing the subtropical gyre and

uplifting it at higher and lower latitudes in a manner
one anticipates from the mean model/data difference

(Figure 15b).
Time histories of the surface pressure corrections

6p,(t) are shown in Figure 18 for a few representa-

tive locations i, along with the uncertainty estimates

(diag{Ppp}) 1/2 of 6p from (23). As required, the es-

timates follow the observations in a slightly smoothed
manner and generally within the uncertainty limits.

In summary, the method produces reasonable results,
both visually and in terms of the prior statistical esti-

mates. As always, however, the degree of agreement of
model and data is sensitive to the choice of rank, i.e.,
the assumed noise level of model and data. Observa-

tions are reproduced identically in the surface pressure

at full rank. Assuming an error of 2.5 cm (K=1500), the
observed variance and its seasonal variation are simu-

lated (Figure 19a), with major deviations limited to the

initial 1-month period. Accounting for geoid uncertain-
ties (K=500), though, leads to a variance level slightly
lower than the observed mean, and the estimates do not

show a seasonal cycle.
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Figure 18. Estimates 6p(t) (solid line) and observa-

tions 6Pobs(t) (dashed line) at the same representative
positions as in Figure 16. Shading represents the un-

certainties of 6_p(t), obtained from Ppp=- G_'PaaG pT .
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(dash-dotted line).

The asymptotic rms residuals at K = 500 indicate

that prior error assumptions are consistent with the re-

sults, leading to a reduction in residuals close to 20% of

the observed variance (Figure 19b). For K = 1500 the

error reduction is actually larger than anticipated, lead-

ing to an rms noise level of 3% (instead of the assumed

5%).

6.1. Time Mean Corrections

Here we focus on the time mean circulation from the

rank 500 estimate. Figure 20 shows the absolute sea

surface elevation field in the OGCM before and after

correction by addition of the linear model estimates.

The observations and inversion have forced a weakened

subtropical gyre in the OGCM with its center shifted

southward by about 10 ° and with its zonal extent con-

fined to the western part of the basin, approximately

15
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Figure 19b. The rms residuals obtained at K = 1500

(dashed line) and K = 500 (dash-dotted line), as com-

pared to initial model/data misfit (solid line).
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Figure 20. Absolute model sea surface elevation field

(a) before and (b) after correction by the data. The
contour increment is 5 cm.

west of the Hawaiian Ridge. As compared to the T/P

observations given in Figure 15a, many of the spurious

small-scale anomalies, which appear to be associated

with geoid uncertainties, have been reduced by forcing

dynamical consistency on the motions.

The vertical structure of the absolute pressure in the

basic state is shown in the left panel of Figure 21 along

with the associated geostrophic flow. The time-mean

correction in pressure to the model first estimate and

the associated flow are shown the right panel of the

figure. In general terms, the large-scale gyre is reduced

from the original OGCM estimate by about 1 cm/s to

2 cm/s in the top two layers. In contrast, the cyclonic

deep circulation is increased below 1000 m depth. The

northern part of the correction has a simple, barotropic-

like vertical structure, but has a more complex structure

in low latitudes, associated with the eastward flowing

equatorial counter current and with weak westward flow

beneath of it.

The current and pressure anomalies are associated

with temperature (density) anomalies at all depths.

Some impression of the corrections required to these

fields in the OGCM may be seen in Figure 22 along

two meridional sections at 165°E and 215°E. Consistent

with the large-scale changes in sea level, the underlying

thermocline is cooled or warmed in such a manner that

the vertically integrated steric changes in density follow

the required changes in sea level.

6.2. The Seasonal Cycle

Because of the heavy spatial filtering, the time-

varying signal remaining in the T/P data is dominated

by seasonal changes in SSH with some minor ampli-

tude fluctuations on timescales of 50 days superimposed



STAMMER AND WUNSCH: PACIFIC CIRCULATION FROM ALTIMETRY 18,427

8ON

140" 1601 180" 200" 220" 240" 260" 280"E

140 _ 160 ° 180" 200" 220" 240" 260" 280"E 140" 180" 180" 200" 220" 240" 280" 28ORE

Figure 21. (left) Absolute pressure in the basic state along with the associated geostrophic
flow for the top three model layers (from top to bottom). A spatial mean pressure has been
subtracted from each field, and positive and negative values are drawn by bold, and thin lines,

respectively. (right) Time mean corrections in absolute pressure and related geostrophic flow
which are associated with the estimate given in the left panel. The contour increment is 5 cm.
The reference vectors represent 10 cm/s (left) and 4 cm/s (right).

(Figure 18). We therefore focus here on the seasonal
signal. Figure 23 shows estimates of the surface ele-
vation anomalies relative to the 1-year mean following
the inversion for the & at K = 1500. The fields are

averaged over the four seasons of the year and are es-
sentially the same as in Plate 3 of Stammer and Wunsch

[1994]. In contrast to their plate, however, the present
one is consistent both with the data and with the model

dynamics. Also shown are the current field anomalies
associated with the annual cycle elevation corrections.

Most of these flows are very weak, in agreement with the
theoretical estimates of Gill and Niiler [1973]. The ex-

ception is in the tropics, where the seasonally reversing
North Equatorial Current and the Equatorial Counter

Current of the order of 2 cm/s are visible. (These
numbers will increase when the model resolution is im-

proved.)

The vertical structure of the seasonal current anoma-

lies can be seen in Figure 24 in a section of the zonal
velocity component along 185°E. The most interesting

feature is the secondary maximum occurring near 30°N
at about 1000 m. This structure, which is located in
the vicinity of the Hawaiian Ridge becomes a prediction

which could be tested against in situ observations. Oth-
erwise, the corrected OGCM shows a large-scale cur-
rent response with vertically coherent structures over
the bulk of the section, with the exception of the tropi-
cal current fluctuations, which tend to be surface inten-
sified.

The seasonal current and pressure anomalies are nec-
essarily associated with temperature (density) changes

at all depths, some of which are shown in Figure 25
along the same meridional section at 185°E. Such re-
sults are equivalent to an estimate of the change in heat
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content of the ocean through the seasons. Temperature
changes of close to I°C are found in the surface layer.
Those values are fairly small and should not be con-

fused with observed surface temperature fluctuations,
since they represent vertical integrals over the top 100
m. A simple calculation leads to an associated steric

height change in sea level

100

by 6_s : 2 cm, consistent with the estimated am-

plitudes. On the other hand, seasonal temperature

changes of the order of 0.1°K at 1000 m depth and
below are artificially large. The relatively low verti-
cal OGCM resolution enhances the vertical extent of

responses to surface forcing and exaggerates tempera-

ture fluctuations in the main thermocline. (Recall the

vertical resolution discussion in the twin experiments.)
We claim, then, that the model/data combination

produces a better estimate of the seasonal cycle than
either can do alone. The reader may, however, object

that models such as the GFDL OGCM used here, are
notoriously unable to properly compute the annual cy-

):k'
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Figure 23. Estimates of seasonal surface elevation anomalies relative to the 1-year mean and
related geostrophic currents. Fields represent (a) spring, (b), summer, (c) fall, and (d) winter,
with spring starting at the beginning of March. Positive and negative values are drawn by bold,
and thin lines, respectively. Contour increment is 1 cm. The reference vector represent 4 cm/s.
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Figure 24. Meridional section of estimated zonal component of seasonal current anomalies along
185°E. Fields represent (a) spring, (b), summer, (c) fall, and (d) winter. Contour increment is
0.2 cm/s in all panels, and negative values are shaded.

cle of heating and cooling [Sarmien¢o, 1986, Stammer et

al., 1996]. They generally fail to import sufficient heat
into the oceanic interior across the sea surface during

the heating season, thus producing a steric contribution
to sea level which is too small. In the present circum-

stances, the observed sea level change is being forced
onto the OGCM by the Green's functions. However,
to the extent that a pressure-excited Green's function

mimics the response from thermal driving once the ther-
mal anomaly has been injected to depth, the results here
should nonetheless be quite accurate.

An issue will arise, however, in a model with much

higher near-surface resolution. Direct thermal injection
would be expected to penetrate only to about 300 m,
whereas a mechanically driven perturbation, such as a
wind-field anomaly would likely (but not necessarily)

penetrate much deeper. In such a model, Green's func-
tion responses for thermal forcing must be computed
for perturbations with a much shallower vertical pen-

etration than from mechanical forcing. In the present

case, the very thick top layer precludes distinguishing
the two vertical scales, but we believe the results shown
are as accurate a depiction of the thermal response as
can be achieved with such low resolution.

6.3. Residuals

The estimation method has proceeded on the assump-
tion that errors in the linear model and data have a

white noise character. In general this is not correct,

and residuals, although consistent with the general er-
ror budget, show strong geographically correlated struc-

tures, and which at various locations greatly exceed the
assumed error level. In Figure 26 the time-averaged

residuals fi = Yobs-:Y at rank K = 500 are shown.
Values of up to 10 cm in amplitude can be found in var-
ious locations, but predominantly in the tropics. These
residuals are static elements of the data which are not

consistent with the underlying error assumptions and

linear model physics.
Such geographically correlated components in the
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Figure 25. Same as Figure 24, but for estimated seasonal temperature fluctuation. Contour
increment is 0.1°C in all panels, and negative values are shaded.

residuals can be caused by various processes. The spa-
tial patterns actually seen, however, are strongly sug-
gestive of systematic errors in the T/P data, i.e. geoid

errors. Stammer and Wunsch [1994] proposed the pres-

ence of strong geoid errors in the western tropical Pa-
cific, and the inability of the model to reduce the residu-

als seen in Figure 26 in that area is supporting evidence

for the hypothesis. The major competing hypothesis
would be that the linear model dynamics are inadequate

to reproduce the observations. Although the analysis is
not reproduced here, crude estimates suggest that even

with this low spatial resolution, the model error is in-
adequate to explain the residuals. If this conclusion is

accepted, the residuals depicted in Figure 26 can be
subtracted from the existing geoid estimate to produce

an improved geoid. This procedure can be quantified

and formalized and involves using the regionally vary-
ing estimates of the correlated geoid errors as well as

the production of a proper error estimate for the model
(see the discussion of Wunsch and Gaposchkin, [1980],
on the geoid/circulation estimation problem).

7. Summary and Discussion

We have explored the estimation of the ocean cir-

culation from combined surface altimeter observations,
a general circulation model, and an associated linear
model defined from pressure Green's functions. The

Green's function method was applied to two different
types of data in the Pacific Ocean. Synthetic data from
an identical twin experiment confirmed the potential of
the method to estimate the subsurface state of the ocean

from the sea surface measurements alone. Reasonable
results were also found for state variables which are not

directly observed by the altimetry: velocity and temper-
ature fields over the full water column. For observation

durations of 1-year or less, there is a loss in resolution
in the deepest parts of the water column, a result an-
ticipated by Munk and Wunsch [1982], who proposed

that acoustic tomography would be the natural com-
plementary technology. The inference of the need for
tomography remains a valid one. What is less clear is

whether the deep ocean will become "observable" by
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Figure 26. Time mean residuals _ : 6p- 6Pobs in
equivalent surface elevation obtained at K = 500 and

plotted in geographical order. Contour increment is 2

cm.

altimetry alone if the data span can be extended to

decades, when deep ocean structures would have time

to manifest themselves at the sea surface.

The main focus here has been on estimating the

state of the Pacific Ocean as obtained from 1-year of

TOPEX/POSEIDON data, with emphasis on the time

average and the annual cycle. Corrections are found

to the OGCM initial estimates for these components

of the circulation, which are both statistically accept-

able relative to prior estimates, and which also pass the

test of physical reasonableness. Residuals lying outside

the prior statistical uncertainties are strongly geograph-

ically correlated and are almost surely a reflection of

geoid errors.

At the surface, the resulting time average state re-

flects a smoothed version of the T/P data, with reduced

initial dynamically inconsistent anomalies in the data.

The correction has weakened the subtropical gyre in

the model and confined it mainly to the western por-

tion of the basin. The resulting velocity and tempera-

ture fields show horizontal and vertical structures which

are consistent with a generally weakened (cooled) sub-

tropical gyre, and the change in mean sea surface is

necessarily accompanied by a change in the mean strat-

ification. Despite the shortcomings of the OGCM in

computing the annual heating cycle, the seasonal cycle

present in the T/P observations is successfully imposed

on the model, leading to sea surface height changes sim-

ilar in amplitude and pattern to those observed by T/P,

with a low, cold North Pacific during winter and spring,

and a warm, high sea surface during summer and fall.

Associated current fluctuations are small, except in the

tropical area, where most of the seasonal changes are in-

duced not by local heating, but by changing wind fields.

Seasonal fluctuations in surface elevation of the order of

a few centimeters are also associated with temperature

fluctuations of about 0.5 °, which show realistic patterns

and amplitudes.

These results are preliminary and can be improved in

a number of ways. Use of information on the geograph-

ically correlated geoid errors should lead to a significant

overall reduction in error. Model spatial resolution and

that of the corresponding Green's functions should be

greatly increased. Moreover, we have not taken full ad-

vantage of all the information available. For example,

one should use the twice-daily wind and buoyancy flux

fields available from meteorological analyses to improve

the OGCM first estimate. Finally, this first attempt

was entirely focussed on altimetric data, but there is no
reason not to use the same method with all other data

types available in the ocean at the same time. In partic-

ular, the use of deep constraint information as available

from floats and acoustic tomography should produce

major improvements in the estimates at depth.
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